Extended Abstract

Motivation The prevalence of sea surface drones from companies like Saildrone necessitates an
increased understanding and training of policies for these drones’ autonomous use. These policies
are then relevant across multiple types of operations, from defense, to scientific data collection and
surveying, and even rescue missions. Compared to aerial drones, the underwater environment is
more complex, and less research has been done in this field. This is due in part to limited sensor
ranges, more sensor noise, and more deployment challenges. Moreover, targets can move in a three
dimensional space, changing their depth and acoustic signatures for evasion.

Method We created a 20x20 km ocean area with semi-realistic sonar physics and a uniform depth
of 500m. On the surface, there are eight autonomous drones with sonars (260 dB source level, 3.5
kHz) that need to search, find, and track a submarine operating at a depth between 200 and 500m that
follows non deterministic movement patterns. For each drone, the detection probability follows the
general sonar equations with added simulation of transmission loss, spherical spreading, absorption /
attenuation, Doppler shift, and ambient noise. To avoid environment size issues, we make the world
wrap around. In this environment we test a Kalman filter baseline, a deep Q learning (DQN) model
with Hindsight Experience Replay, and a decentralized multi agent proximal policy optimization
(PPO) model with continuous control.

Implementation For the Kalman filter baseline, the drones are randomly initialized, and then do an
initial randomized search. Upon detection of the submarine, they switch to tracking mode, with the
detecting drone following the submarine directly, and other drones go on predicted intercept paths
instead. The DQN model uses a flattened vector representing a binned and discretized state space
and a five layer fully connected network. It outputs eight discrete, binned headings for each drone.
For increased training given the large state space, we implement hindsight experience replay and
decaying epsilon learning. Finally, the multi agent PPO implementation is trained for each drone,
with input observations containing the drone’s state and detection information from three nearest
neighboring drones within a 1km communication range. For the later two models, the reward function
highly incentivizes positive detections, and strongly disincentivizes losing the submarine after already
having detected it. This help the model learn to track the submarine after finding it.

Results We note that the Kalman fitler baseline got around 0.4 detections per agent per step,
taking just under 50% of its iterations before first detection, and then reliably tracking the target.
The DQN model did not learn very well, capping at 8-10 detection events per episode with no
improvement in search-to-track transitions. Namely, it only learned how to optimally spread out
the drones in the environment to maximize pings, but did not learn to track the submarine. Finally,
the PPO model got two to four times higher detection rates than DQN, even matching the Kalman
baseline’s performance despite using more realistic communication constraints. However, it showed
high variance during training, and periodic collapse. Even though it managed 80% target lock after
detection, this performance was relatively unstable through the 1,000,000 training timesteps.

Discussion Interestingly, our baseline ended up being stronger than anticipated, given that the PPO
model only matches the Kalman filter performance. The challenges of credit assignment and reward
structures in the multi agent setting make training these RL models quite difficult. Moreover, these
models can’t distinguish between lack of signal and loss of signal, making it difficult to learn both a
searching and tracking phase in the same policy.

Conclusion In this paper, we show that traditional reinforcement learning algorithms like DQN
under perform when learning multi agent policies because of the large state space, getting worse
results than the simpler Kalman filter baseline. However, dedicated multi agent solutions overcome
this issue through decentralized control, matching the quality of the Kalman baseline, even with
less information available to each agent. However, there is still work to be done in understanding
the training characteristics of PPO and how to avoid policy collapse. Overall, we train a model that
successfully finds a submarine and then manages to maintain an 80% lock rate on the submarine.

Reinforcement Learning for Sea-surface UAV Tracking
of Underwater Submarines

Maxime de Belloy Varun Agarwal
Department of Computer Science Department of Computer Science
Stanford University Stanford University
belloy@stanford.edu varun4@stanford.edu
Abstract

This paper looks at multi agent, autonomous submarine tracking through active
sonar in an ocean environment. We present an approach for multiple surface
drones to cooperatively search and track an actively maneuvering submarine at
depth. We implement Kalman filter, deep Q learning (DQN), and proximal policy
optimization (PPO) approaches to this problem. We show that both the PPO and
Kalman filter implementations are able to search and track the target, while the
DQN model struggles from the size of its state space and only learns a searching
policy. Overall, PPO demonstrates consistent detection and an over 80% lock on
target after detection.

1 Introduction

The prevalence of sea surface drones from companies like Saildrone necessitates an increased
understanding and training of policies for these drones’ autonomous use. These policies are then
relevant across multiple types of operations, from defense, to scientific data collection and surveying,
and even rescue missions. Unlike aerial drones, the underwater environment is more complex,
given the more complex propagation physics and more noisy sensors. In this paper, we look at
implementing techniques from multi agent RL to the maritime environment. In particular, we look
at the task of searching for and tracking an underwater submarine. We first set up this environment
with a series of drones with active sonar that can communicate with each other and share information.
After simulating a submarine with different action states and properly modeling its underwater sonar
response, we train a Kalman Filter, a deep Q learning model, and proximal policy optimization to act
on or learn policies to track the moving, erratic underwater target.

2 Related Work

Prior literature largely discusses the application of RL to UAV swarming and algorithm development
for active sonar tracking, but not at the intersection of the two. |Arranz et al.|(2023) proposes an Al
system to search for and track ground targets for security purposes. The chief technical goal of the
paper is to avoid obstacles (static and dynamic) and prevent collisions between agents. In pursuit of
this, they use a centralized swarm controller to assign high-level search and tracking tasks to UAVs;
cooperative sub-agents act as individually trainable models responsible for low-level actions. The
authors applied Proximal Policy Algorithm to learn to search an area and effectively "lock on" to a
target even when the tracking has to be spread across multiple drones due to obstacles in sightlines.
They demonstrate adaptability to varying numbers of targets and drones, but exhibit difficulties with
computational cost and convergence. Their work holds relevance to the Methods discussed later;
as opposed to computer vision, our agents perceive noisy sonar data instead, creating a different
distribution to learn.

Stanford CS224R 2025 Final Report

One of the issues with submarine tracking is that they are purpose-built for evasion. Work from |Reddy
et al.| (2024) looks at how to distinguish underwater mines from rocks, achieving an accuracy of
approximately 84% with a suite of non-deep learning classifiers - Support Vector Machines, Decision
Trees, Random Forests, KNNs, XGBoosts, and Ensembles. While their work uses supervised learning
methods, their setup will be helpful in finding submarines when they are not moving and may appear
like rocks.

To evaluate the results of our system, we can compare against benchmarks found by |Wang et al.
(2010), which looks at performance results for different active sonar tracking algorithms - including a
few versions of the Kalman filter and other probabilistic methods. They find that both the Extended
Kalman Filter and the Converted Measurements Kalman Filter achieve equivalent performance in
both single and multi-target tracking scenarios (though, CMKF produced marginally lower RMS
errors and track fragmentation). Their work will also be useful to validate how improvement scales
when the data collection for these algorithms is spread across multiple sensors in the drone fleet.

Finally, Wakefield et al.[|(2024) have shown promising results in applying deep RL techniques for
smart tracking of an underwater sound emitting object with passive sonar. However, their work
focuses on one sonar that has to be repositioned to triangulate a moving object. Moreover, with a lack
of immediate range information, detection and localization become challenging problems. Since our
work will focus on a swarm of drones, the triangulation can happen from different drones instead of
having to move one sensor around. This work will be useful as a starting point for our passive sonar
approach.

Our work appears at a gap in the literature between sonar tracking and reinforcement learning
applications for controlling drone swarms.

3 Method and Environment

We built our own simulation environment, based off a 20x20 km area in the ocean, with a constant
depth of D = 500 m. To describe the sound propagation speed through the environment, we defined
uniform water characteristics with temperature T = 15°C and salinity S = 35 ppt. Applying Mackenzie
(1981))’s equation for sound speed in oceans, we get:

c = 1448.96 + 4.591(15) — 5.304 x 1072(15)% + 2.374 x 10~ %(15)3 (1)
+ 1.340(35 — 35) + 1.630 x 1072(250) + 1.675 x 1077 (250)?)
—1.025 x 1072(15)(35 — 35) — 7.139 x 107 13(15)(250)? 3)

~ 1500 m/s 4

Finally, we set a global ambient noise level of 40 dB re 1pPa.

3.1 Submarine

We have a submarine that operates within this environment at depths of 200-800 m following basic
dynamics and constraints:

* Kinematics: Position update as p(t + At) = p(t) + vi(0) At where v € [3,10] m/s, 0 is
heading, At =55

* Depth dynamics: z(t + At) = z(t) + 2At, where |2] < 1 m/s
* Turn dynamics: 0(t + At) = 0(t) + wAt, where |w| < /60 rad/s

The submarine changes between multiple operation states following a continuous time Markov chain.
The submarine can either go forward normally, zigzag, burst forward, run in silent mode (slower, but
less detectable), or dive / climb to different depths.

The submarine then has the following acoustic signature:

S(f)=No-He(f)+ No- Ho(f) + C(f) + W(f) +£(f) ©)
where NV, is the base noise level, H.(f) is the engine noise transfer function, H,.(f) the hull resonance
responses, C'(f) the the cavitation noise, W (f) the wake induced distortion, and £(f) the stochastic
noise with variance proportional to the base noise level. Specific definitions and values for each of
these variables, as well as the Markov transition matrix for the submarine can be found in Appendix
A.

3.2 Drones

The environment also contains 8 autonomous surface vehicles (ASV or drones), that are trying to track
the submarine. The drone’s have an onboard active sonar system with source Level: SL = 260dB re
1pPa @ 1m, operating frequency: fo = 3.5 kHz, and ping frequency of 3.33H z. The drones search
at 15 m/s, track at 8m/s, and can accelerate and turn at 3m/s? and /4 rad/s respectively.

To calculate the detection probabilities, we first need to define the signal to noise ratio or SNR, which
captures how noisy a sonar reading is. It follows:

SNR = SL — 2TL + TS — NL 6)

with TL the transmission loss, TS the target strength, and NL the noise level. The transmission loss is
modeled as:

TL = 20log,o(R) + aR + 8D @)

The first term represents noise spreading loss in dB, o = 0.03 dB/km represents signal absorption in
seawater, and 5 = 0.03 dB/100m models attenuation from signal depth.

The target strength is:
TS = TSg + 151logyo(0s) + 5B(0) ®)

with base level TSy = 20 dB, a noise term proportional to the acoustic signature level o, of the
submarine, and a beam localization factor B(0) = cos(7r,.¢;/2) where r,..; = d}, /T cone represents
the submarine’s relative position within the sonar cone, as seen in Figure

Finally, the noise level is
NL = 101og,(10Na/10 4 10N-/10))
with ambient ocean noise of N, = 40 dB and each drone producing N = 5 dB of operation noise.
Finally, for each drone, the detection probability is calculated a sigmoid function:
1
1+ exp(—(SNR — SNRy)/k)
with detection threshold SNR; = —10 dB and slope k = 2.

When the drones detect the submarine, they get noisy, Doppler-shifted informa-
tion about the submarine’s range (I%), bearing (é), and confidence of detection (C):
R = R+ eg, where e ~ N(0,0.01R)
€9 ~ N(0,0.03) rad
C = min(0.98,SNR/20 - mp - mp - mgp)
mp =14 |Af[/1000, mp =1 — |eg|/(0.1Rmaz), mo =1 — |eg|/(0.50pw)

The environment is visualized in a 3D plotted world as shown in Figure]

P4(SNR) = (10)

4 Kalman Filter Baseline

We set up a Kalman filter based baseline to compare against our RL agent. In this baseline, the drones
are randomly deployed in the environment on the surface. They then move around randomly until
they first detect the submarine.

When they get a positive ping (SNR > -10 dB and confidence > 0.2), the drones start tracking the
submarine by predicting the submarine’s (depth invariant) position.

The initial detection state x is defined as a function of the detecting drone’s current position and noisy
range and bearing estimates. Similarly, the covariance matrix P uses position uncertainty o, = 50
m:

{x = [z, ¥y, Vs, Uy]T =[x, + Rcos(é), Yo + Rsin(é), Vsub cos(é), Vsub sin(é)]T (11

& 2 2.2 2
Py = diag[o,, 05, V5, V)

3D Submarine Tracking Environment
(Downward Sonar Cones)

Sea Surface]
B submarine

1
A \Vehicle

>
>
X Position (m)

0 17
200@®000

Figure 1: Submarine Tracking environment

Then, state transitions follow simple velocity updates with state transition matrix F', process noise
covariance (), and covariance prediction:

Pyp—1 = FP a1 FT +Q, g =0.1m/s (12)
4 3
10 At 0 A S
_jo1 0 At _ 2| 0 B 0 AaF
00 0 1 0 A o ap

When the drones get new detections, the Kalman filter is updated as:

K = Py H' (HP,), H" + R)™!
Xk = Xijh—1 + Ki(zp — HXpp—1) (14)
Prp = (I - KiH)Ppp—1

with measurement model, observation matrix, and detection confidence covariance as:

T4 zy + Rcos(f) 1000 o2,
. = = ~ ~ H = R = 71 1
2k [yd] {yv + Rsin(6) |’ 0 1 0 0}’ max(0.5,C) (15

With this model of the submarine’s position and bearing, the current detecting drones follows the
predicted submarine position, while the remaining drones are assigned to spaced intercept positions

in the direction the submarine is currently moving. These intercepts are recalculated every couple of
steps (8 seconds).

5 Deep Q-Learning Baseline

We also decide to implement a single policy Deep Q learning model to track the submarines. The
learned policy acts on all 8 drones simultaneously. To decrease the large state space, it is discretized
to a 32 x 32 x 3 flattened vector describing the surface position of the drone clipped to a grid and the

detection confidence for each drone. To further simplify, each drone can only operate on 8 discrete
headings with angles 6, = 2wa/8 fora € {0,1,...,7}.

The underlying network has 5 intermediate fully connected layers with sizes 256, 128, 128, 64, and
64. The resulting output produces n * 8 actions = 64 Q values. These give the value for each action
for each drone.

We use a simple reward function that incentivizes finding and following the submarine:

10.0 if submarine detected
r(s,a) = ¢ —0.5 if previously tracking but lost (16)
—0.1 otherwise (searching)

The training also uses Hindsight Experience Replay (Andrychowicz et al.|(2018)) - HER), to help
get signal from rollouts where the submarine was not found. In rollouts where the submarine was
not found, HER substitutes one of the achieved drone position as the goal position. With HER ratio
p = 0.3 and k = 2 virtual goals per episode, the augmented reward is:

THER = _||pachieved - pgoal||2 (17)

The model is trained using Adam (Kingma and Bal(2017)) for 10000 epochs using € greedy explo-
ration that decays from € = 1.0 to ey, = 0.05. Episodes run for 1000 steps, with 8 drones initialized
randomly at 3km from the center of the grid.

5.1 DQN-Learned Policy

The average policy and drone direction after training are plotted in Figures 2] and [3] (note that the
environment is wrap-around):

We see from those figures that the policy learns only to maximally spread out the drones across the
space. This way, it covers more of the area, and detects the submarine more frequently. However,
likely due to the still too large state space, the policy doesn’t learn to track the submarine after first
contact.

This incomplete training may also be due to the global policy, instead of letting each agent learn its
own. While the single policy has more information to work with, the resulting state and action spaces
are eight times as large.

DQN Policy: Average Movement Direction by Drone

W Drone 0 (122.9°)
Drone 1 (245.7°)
DQN Policy: Action Distribution by Drone B Drone 2 (192.1°)
Drone 3 (315.1°)
0.00 0.46 0.00 0.00 0.00 0.00 0.00 B Orone 4 (20.7°)
g 10 N Drone 5 (94.3°)
B Drone 6 (225.0°)
N Drone 7 (192.1°)

Drone ID

South « - North

rone 6 DroneS D

7 D

- 000 0.00 0.00 0.00 0.00 046 0.00

East NE North w West sw South se
Action (Direction)

~100 -075 050 -025 000 025 050 075 100

Figure 2: DQN Policy per Drone (1000 sims) East - = West
Figure 3: DQN Direction per Drone (1000 sims)

6 multi agent PPO

In this scenario, the cooperative task is modeled as a Decentralized Partially Observable Markov
Decision Process (Dec-POMDP), defined by the tuple (S, A, P, R,Q, O, N,~) (N = 8 is the number
of ASV agents). The state space S encompasses the continuous 3D positions, headings, and internal
states of the submarine and all ASVs. Each agent i € {1, ..., N} selects a continuous action a; € A;.

Critically, the state s is not fully observable. Each agent i receives a local observation o; € €;
from a shared observation function O(s, 7), which is conditioned by stochastic sensing modalities
(sonar). Agents aim to learn a decentralized policy 7;(a;|o;) that collectively maximizes the expected
discounted future return.

Each agent controls its heading (turn rate / direction). The policy network outputs a continuous,
normalized action G; € [—1, 1]. This is then scaled to the vehicle’s maximum turn rate 6y,,y, yielding

the final action a; = G; - Opax. In building a system to coordinate homogeneous agents, focusing
on the heading offers a powerful simplification that abstracts away specific vehicle dynamics while
retaining autonomy in movement. Agent speed is governed by a simple heuristic: a higher speed for
tracking is triggered when an agent has a high-confidence detection; else a default "search" speed
is used. Narrowing the policy to maneuver decisions enabled more efficient rollouts and ease of
training, while retaining adaptive behavior.

The design of the observation vector o; for each agent is critical for learning effective coopera-
tive strategies - the information shared led to significant differentials in detection rates (all other
hyperparameters kept constant). We construct a fixed-size observation vector composed of two parts:

1. Self-Agent Information: normalized range, absolute bearing, relative bearing (target bearing vs
agent heading), and confidence of sonar detection. Positional and relative information is necessary to
provide clear, immediate error signals for maneuvering and disambiguate heading from the target’s
frame of reference.

2. Team Information: to enable cooperation, agents share information with their nearest neighbors.
Here, we pass data for the K = 3 closest neighbors within a communication radius R, (1000m).
For each neighbor j, the following information is included relative to agent ¢ to ensure the policy is
invariant to translation and rotation: relative position (Az, Ay) (normalized by R..), relative heading
(0; — 6,), neighbor’s last-known sonar detection confidence. In the case that the agent has fewer than
K present neighbors, we pad the remaining space in the vector with Os, to simplify the fixed-size
input for the network (and batch training).

The most complex part of this design was engineering a reward that surpasses the conventional naive,
sparse reward for detection and leverages multi agent behaviors. Subsequently, we created a denser
reward function that promotes a strategy with search and track phases. When the team of agents are not
tracking the submarine, they are engaged in search. Here, we apply a ’coverage penalty’, in which we
penalize agents which come into proximity of each other (beyond a radius R.,y). The goal is to directly
incentivize the agents to fan out, maximize coverage, and accelerate detection of the submarine.
Formally, we can write this (for agent 7) as: Reoy = i Weov - max(0,1 — d;;/Reov). Tracking
mode is initiated by an agent producing a detection confidence > 0.5 (a tunable hyperparameter); it
only disengages if there is no detection after a period of ¢ = 10 seconds past the previous detection
(temporarily pausing the penalties while they attempt to reacquire contact). The goal in this mode
is structured to include: a team reward (distributed to all agents) proportional to the maximum
confidence achieved by an agent (Rieam = Wieam - Max(cy, ..., ¢)), an individual reward (distributed
to the agents currently generating detections), and a convergence bonus (distributed to non-detecting
agents) - in which the reward inversely correlates with the distance to the actively-detecting agent(s).
In all timesteps (regardless of mode), there is a minute time penalty applied to instantiate urgency.
The structure of this reward creates richer, localized reward densities which allow PPO to outperform
our DQN baseline.

Our proposed model involves centralized training via PPO. A single shared policy network 74 and
value function V,;, (composed of shared parameters), are trained on the collective experience of
all N agents for (a) computational efficiency and (b) leveraging the homogeneity of agents in this
setup. The policy is trained on-policy through rollouts of 16384 agent-steps (2048 steps / agent).
Furthermore, we use Generalized Advantage Estimation (GAE) to compute stable advantage targets:

ASAE(%/\) =3 eo(YN) et 6 = re + Vi (0r41) — Vi (0r). The policy is updated by optimizing

the PPO-clip objective function over K = 6 epochs on the collected batch. The objective for the actor
is: LUP(¢) = R, [min (%At,clip (%, 1—¢1+ e) At)] Here, € = 0.1 is the
clipping hyperparameter. The critic is updated by 0minimizing MSE and entropy is applied to the loss
to promote exploration. The architecture follows a classic actor-critic approach, with a shared feature
extraction backbone composed of an MLP with two fully-connected hidden layers (256, 128) with
ReL.U activations. The actor produces a mean of a Gaussian probability distribution for the action
space; standard deviation is separately trainable to permit exploration variance tuning. Increasing
the width or depth of the network (our largest network had dimensions 512, 256, 256, 128) led to no
discernable improvement on the task, suggesting that the bottleneck was in the observation vector
and reward function.

7 Results

7.1 Quantitative Evaluation

2,000 4,000 6,000 8,000 (EEELERS

Figure 4: DQN Baseline

o PPO MARL Learning Curve

—— Avg reward per agent

o =]
w »

Average Reward per Agent
o o
= s
— =
T
—— =
——
——

0.0

50000 100000 150000 200000 250000 300000
PPO Update #

o

Figure 5: Successful Training Run of PPO-MARL

The Kalman filter baseline (KF) exhibits a detections per agent per step of approximately 0.4. Across
simulations, KF typically consumes 45-55 percent of the time in the search phase, as agents remain
stationary or engage in random walks. However, when an initial stream of detections is made, Kalman
converges quickly on and consistently follows the target, contributing to a high detection rate per
episode. However, the caveat is that all KF agents communicate when tracking occurs (whereas we

Episode Rewards Submarine Detections

0.40 Raw Raw
— MA(3steps) | o5 —— MA (3 steps)

0.25

Average rewaru
Detection Rate

0 10 20 30 40 50 60 0 10 20 30 40 50 60
Training Steps Training Steps

Figure 6: Policy Collapse of PPO-MARL

Evaluation Reward Over Time

0.25

0.20

015] “ “

it lm it 'i"‘

0 50 100 150 200
Evaluation Run (once per 2 updates)

0.10 1

| ‘ ’
! lmlm’h“ ”l

Figure 7: High Variance Evaluation of PPO-MARL

0.05

@

Average Reward (Deterministic Policy)

0.00

S

introduced realistic communication limits in our PPO-MARL scenario). The DQN baseline exhibits
minimal effective learning - Figure 4 demonstrates how the agents remained at approximately 8-10
detection events per episode (per agent), with marginal improvements to either search minimization
and/or tracking. PPO-MARL demonstrates the capacity to navigate the continuous, sparse-reward
space - as seen in Figure 5, where it shows consistent detection; considering travel time to the
submarine and reaching around 80 percent lock once detected, PPO MARL is similar to an optimal
outcome. PPO-MARL outperforms the DQN’s detection rate between 2-4x (when normalizing
detection / agent / step), and matches the KF baseline (which has perfect information). However,
on average, it has inconsistent and unstable behavior. Figure 6 illustrates how the model routinely
undergoes policy collapse - oscillating from high-reward outcomes to rollouts containing 0 detections
periodically. Moreover, Figure 7 depicts the high variance and uninterpretable performance of the
model as we trained the system across 1000000 timesteps.

7.2 Qualitative Analysis

A core limitation of DQNs is its inability to map onto continuous action spaces; despite the discretiza-
tion of the space into cardinal directions in this instance, the model failed to learn beyond the scope
of expanding coverage during tracking. Many of the model’s shortcomings are systemic issues shared
by PPO-MARL. The PPO-MARL system continued to struggle with the non-stationary dynamics
of the targets and collaborative agents; given that the Markov assumption is violated and the rules
are continuously evolving (considering the 20km x 20km x 1km space of positions, trajectories, and
noisy pings), it is not unexpected that the model failed to establish a consistent policy over the course

of 500,000 timestep training runs. Moreover, performing credit assignment remains a tricky task -
decomposing individual contributes to the reward function meant that the signal the model used to
learn was heavily diluted - indicating the necessity for separability in or of the policy used to train the
agents. Additionally, there is the issue of intractability of constantly shifting, partially-observable
spaces obscured by noise (both spectral and in confidence approximations shared between limited
sets of neighbors).

8 Discussion

Despite the scale of model size, training, and observation / reward setup, the deep learning models
presented were unable to measurably surpass the KF baseline. They proved - in the scope of training
conducted - unable to learn a search-and-track strategy that reliably coordinates and converges on a
submarine. Given the feedforward nature of models and lack of observation-stacking, they had to
operate purely reactively to incoming observations - their inability to distinguish between no signal
during search and loss of signal during tracking (despite the implementation of a grace period in
PPO-MARL to re-establish contact) likely contributed to the rapid decay of rewards we see in the
training trends. In comparison, KF baseline is not a memoryless approach - the use of recursive
estimation and probability-data-associations enables it to better map plausible trajectories of the target
and maintain robust belief (aided by the perfect information setup in the baseline). Summatively,
our findings convey the necessity of using memory-based methods to adapt to high-dimensional,
non-stationary environments - regardless of the deployment of RL.

9 Conclusion - Future Directions

Looking forward, we see a number of directions in which we can improve the simulation realism and
model performance. We had built environments containing procedurally generated obstacles of vary-
ing size and position, but they suffered from significant slowdown (as collision avoidance introduces
expensive computations). In the near future, trialing in environments with obstacles optimized to
mitigate rollout efficiency loss is a key goal. Moreover, exploring Graph Attention Network-based
message passing between agents (create embeddings to share, and use attention coefficients to model
confidence or uncertainty of reports) and meta-learning (adding a controller/meta-level may allow
for formation of subgroups of UAV activity, joint optimization, and more robust task solutions), are
core goals to pursue for model improvement. In terms of the task structure, there are four major
areas of improvement: (1) adversarial training for submarine evasion - enabling the submarine to
learn dynamic, fine-grained maneuvers beyond hard-coded patterns encoded in a transition-state
matrix, (2) systems with agent specialization / heterogeneity to evaluate how novel optimal strategies
shift and parameter or policy-sharing evolves, (3) systems with multiple target submarines, and (4)
transitioning to a full-scale simulator using a ROS/Gazebo acoustic plugin with generated bathymetry.

10 Team Contributions
* Group Member 1 (Maxime): Worked on setting up the environment and the Kalman filter
baseline. Also, wrote and trained the DQN model.

* Group Member 2 (Varun): Helped fix the sonar characteristics and introduce noise and
obstacles in the environment. Wrote and trained the multi agent PPO model.

Both members worked on the poster and final report equally.

Changes from Proposal In the proposal, we wanted to simulate passive sonar techniques. However,
it was not feasible to accurately simulate the ambient sound spectrograph of the ocean floor and the
sound signal and acoustic signature of the submarine.

References

Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder, Bob
McGrew, Josh Tobin, Pieter Abbeel, and Wojciech Zaremba. 2018. Hindsight Experience Replay.
arXiv:1707.01495 [cs.LG] https://arxiv.org/abs/1707.01495

https://arxiv.org/abs/1707.01495

Raiil Arranz, David Carramifiana, Gonzalo de Miguel, Juan A. Besada, and Ana M. Bernardos. 2023.
Application of Deep Reinforcement Learning to UAV Swarming for Ground Surveillance. Sensors
23,21 (Oct. 2023), 8766. https://doi.org/10.3390/s23218766

Diederik P. Kingma and Jimmy Ba. 2017. Adam: A Method for Stochastic Optimization.
arXiv:1412.6980 [cs.LG] https://arxiv.org/abs/1412.6980

K. V. Mackenzie. 1981. Nine-Term Equation for Sound Velocity in the Oceans. The Journal of the
Acoustical Society of America 70, 3 (1981), 807-812. https://doi.org/10.1121/1.386920

B. Nikhil Krishna Reddy, Rashmi M. R, Chockalingam Aravind Vaithilingam, and S. Kamalakkannan.
2024. SONAR Based Under Water Mine Detection Using Machine Learning Algorithms. In 2024
4th International Conference on Innovative Practices in Technology and Management (ICIPTM).
1-4. https://doi.org/10.1109/ICIPTM59628.2024.10563616

Joshua J. Wakefield, Adam Neal, Stewart Haslinger, and Jason F. Ralph. 2024. Sonar Path Planning
Using Reinforcement Learning. In 2024 27th International Conference on Information Fusion
(FUSION). 1-8. https://doi.org/10.23919/FUSION59988.2024.10706484

J. Wang, A. von Trojan, and S. Lourey. 2010. Active sonar target tracking for anti-submarine warfare
applications. In OCEANS’10 IEEE SYDNEY. 1-7. https://doi.org/10.1109/0CEANSSYD,
2010.5603790

A Submarine Characteristics

A.1 State changes Markov Chain:

The transition probability matrix for the submarine is:

0.80 0.10 0.05 0.03 0.02
0.70 0.20 0.05 0.03 0.02
P=10.60 0.15 0.10 0.08 0.07
0.70 0.10 0.08 0.07 0.05
0.70 0.10 0.08 0.07 0.05

for the ordered state space: {normal, zigzag, burst, silent, depth}

Depending on the position of the closest drone, the submarine starts with state drawn from a Poisson
process with rate A = 0.2 s~! (baseline) or A = 0.5 s~! (under threat, distance < 500 m). The length
of time spent in a state is exponentially distributed.

The submarine’s acoustic signature is calculated as

S(f) = No- He(f) + Ny - H.(f) + C(f) + W(f) +&(f) (18)
with:

* Ny =1.2(1 + 0.50/Vmaz + 0.3|w|/wimaz + 0.2|2|/Zmaz) the base noise level

H.(f) = 0.8 for | f — 50| < 20 Hz (engine noise at 50 Hz)

H.(f)=0.6for |f — f.| <10 Hz, f, € {120,240, 360} Hz (hull resonances)

o C(f) = Np-0.2-max(0,2(v/vean — 1)) for f > 200 Hz (cavitation noise, veqy = 0.6U1ma2)
W(f) = (1 + 1.5w) for f < 100 Hz (wake induced distortion, ws = 0.8v/Vnaz)

E(f) ~ N(0,0.1Ny) (gaussian noise)

When the submarine is in stealth mode, IV} is reduced by a factor of 0.8.

10

https://doi.org/10.3390/s23218766
https://arxiv.org/abs/1412.6980
https://doi.org/10.1121/1.386920
https://doi.org/10.1109/ICIPTM59628.2024.10563616
https://doi.org/10.23919/FUSION59988.2024.10706484
https://doi.org/10.1109/OCEANSSYD.2010.5603790
https://doi.org/10.1109/OCEANSSYD.2010.5603790

	Introduction
	Related Work
	Method and Environment
	Submarine
	Drones

	Kalman Filter Baseline
	Deep Q-Learning Baseline
	DQN-Learned Policy

	multi agent PPO
	Results
	Quantitative Evaluation
	Qualitative Analysis

	Discussion
	Conclusion - Future Directions
	Team Contributions
	Submarine Characteristics
	State changes Markov Chain:

